FIBERS SITE GROUP

December 12, 2016

Via Email Electronic Copy

Adalberto Bosque, PhD, MBA, REM, CEA Response and Remediation Branch U.S Environmental Protection Agency City View Plaza II - Suite 7000 48 RD, 165 Km. 1.2 Guaynabo, PR 00968-8069

Subject: RD/RA Monthly Report – November 2016

Fibers Public Supply Wells Site

Guayama, Puerto Rico

Dear Mr. Bosque:

On behalf of the Fibers Public Supply Wells Site Settling Defendants, we are submitting the attached RD/RA Monthly Report prepared pursuant to the Consent Decree (Civil Action No. 92-2486) in the matter of *Unites States v. Anaquest Caribe, Inc. et al*, Section IX, Paragraph 30, Reporting Requirements.

Please feel free to contact Mr. James Kirschner of ARCADIS at (602) 797-4519 or me at (724) 544-4874 if you have any questions or comments regarding this submittal.

Sincerely,

Joe Biss, CHMM

Fibers Site Group Project Coordinator

EHS Support LLC

Copies:

Chief, New York/Caribbean Superfund Branch, Attn. Mel Hauptman- via email only

Ms. Evelyn Rivera-Ocasio, Assistant Regional Counsel – Caribbean Programs – via email only

Chief, Environmental Enforcement Division, U.S. Department of Justice (DOJ #90-11-2-768)

Amarilis Rodríguez Mendez, State Remedial Project Manager, Puerto Rico Environmental Quality Board - via email only

Ms. Katherine Mishkin, Hydrogeologist, USEPA Superfund Technical Support Section – via email only

Ms. Enid Diaz, Departmento de Recursos Naturales y Ambientales

Mr. Jorge Morales, PRIDCO - via email only

Mr. Joel Melendez Rodriguez, PRIDCO - via email only

Ms. Ana Palou Balsa, PRIDCO - via email only

Mr. Dan Vineyard, Jackson Walker- via email only

James Kirschner, Arcadis - via email only

RD/RA Monthly Report – November 2016 Fibers Public Supply Wells Superfund Site Guayama, Puerto Rico

(a) Description of actions which have been taken toward achieving compliance with this Decree.

Fibers Air Stripping System

The Fibers groundwater extraction and treatment system (GWETS) was operational for approximately 90% of the time during November 2016. The GWETS had two automated shutdowns due to power outages and equipment alarms and was then started at the Site the next business day. In addition, it had one shutdown due to GWETS maintenance.

A summary of the daily treatment system operating records is presented in Table 1. The GWETS average flow rates are depicted on Figure 1. The GWETS operated at an average flow rate of 316 gallons per minute (gpm) and treated approximately 15.2 million gallons of water in November 2016. To date (since May 1999), approximately 3.04 billion gallons of water have been treated at the Fibers Site.

(b) Summary of all sampling results and tests, and all other data received or generated by Settling Defendants.

Groundwater influent and effluent samples were collected on November 4, 2016 and analyzed by Pace Analytical Services, Inc. (Pace). A summary of the November 4, 2016 GWETS Laboratory Analytical Results is provided in Table 2. A summary of influent groundwater concentrations of tetrachloroethene (PCE) and total haloethers from the GWETS is depicted on Figures 2 and 3, respectively.

Arcadis U.S., Inc. (Arcadis) performed a data quality assessment (validation) of the laboratory analytical results reported by Pace. Results are summarized in the Data Review Report #26692R and provided as Attachment 1. A copy of the chain of custody and annotated sample analysis data sheets are provided as an attachment to the Data Review Report. A copy of the complete Laboratory Analytical Report #2045396 is provided as Attachment 2. A copy of the GWETS Sampling and Monitoring Field Form, documenting sample collection information, individual flow rates at the three groundwater extraction wells and treatment system parameters is provided as Attachment 3.

(c) List of all work plans, plans and other deliverables completed and submitted.

None for this reporting period.

(d) Description of all actions, including, but not limited to, data collection and implementation of work plans, which are scheduled for the next six weeks.

The second semi-annual groundwater monitoring and sampling event of 2016 commenced on October 17, 2016 and is expected to be completed in December 2016.

(e) Information regarding the percentage completion, unresolved delays encountered or anticipated.

Construction Activities – 100% complete.

System Start-Up – 100% complete.

Start-Up Performance Monitoring – 100% complete.

Long-Term Operation & Maintenance Period – In progress.

(f) List of any modification to work plans or other schedules the Settling Defendants have proposed.

None.

(g) Description of activities undertaken in support of the Community Relations Plan.

No support activities have been requested for the next planning period.

(h) Actions undertaken to address outside parties concerns.

No concerns from outside parties were encountered during this reporting period.

Table 1 Summary of Daily Treatment System Operating Records - November 2016 Fibers Public Supply Wells Superfund Site Guayama, Puerto Rico

Recording Date	Influent Flow (gpm) ¹	Effluent Flow (gpm) ²	RW-2 (gpm) ³	RW-4 (gpm) ⁴	RW-5 (gpm) ⁵	pH ⁶	Comments
11/1/2016	351	388	115	160	80	8.2	
11/2/2016	351	388	115	160	80	8.2	GWETS maintenance.
11/3/2016	351	388	115	160	80	8.2	GWETS maintenance.
11/4/2016	292	324	96	134	67	8.2	GWETS down due to power outage and equipment alarm.
11/5/2016	0	0	0	0	0	8.3	GWETS down due to equipment alarm.
11/6/2016	0	0	0	0	0	8.3	GWETS down due to equipment alarm.
11/7/2016	234	259	78	108	54	8.3	Started GWETS.
11/8/2016	351	388	115	160	80	8.3	
11/9/2016	351	389	115	160	80	8.3	
11/10/2016	351	389	115	160	80	8.3	
11/11/2016	351	389	115	160	80	8.3	GWETS maintenance.
11/12/2016	351	389	115	160	80	8.3	
11/13/2016	351	389	115	160	80	8.2	
11/14/2016	351	389	115	160	80	8.2	
11/15/2016	216	240	73	101	47	8.2	GWETS maintenance.
11/16/2016	351	389	115	160	80	8.2	GWETS maintenance.
11/17/2016	351	391	115	160	80	8.2	
11/18/2016	351	390	115	160	80	8.2	
11/19/2016	351	390	115	160	80	8.2	
11/20/2016	350	390	115	160	80	8.2	
11/21/2016	351	389	115	160	80	8.2	
11/22/2016	351	390	115	160	80	8.2	
11/23/2016	351	391	115	160	80	8.2	
11/24/2016	351	390	115	160	80	8.2	
11/25/2016	351	390	115	160	80	8.2	
11/26/2016	351	391	115	160	80	8.2	
11/27/2016	351	391	115	160	80	8.2	
11/28/2016	352	393	115	160	80	8.2	
11/29/2016	351	391	115	160	80	8.2	
11/30/2016	322	361	106	147	74	8.2	GWETS down due to power outage and equipment alarm.
Monthly Average	316	351	104	144	72	8.2	J -

Notes:

Flow rates are 24-hour daily average.

gpm = gallons per minute.

¹ = Recorded from instrument FIT-101.

² = Recorded from instrument FIT-301.

 $^{^{3}}$ = Recorded from instrument RW2 FIT.

⁴ = Recorded from instrument RW4 FIT.

⁵ = Recorded from instrument RW5 FIT.

 $^{^{6}}$ = Recorded from instrument pHIT-201A.

Table 2 Summary of Treatment System Laboratory Analytical Results November 2016 Fibers Public Supply Wells Superfund Site Guayama, Puerto Rico

Fibers Groundwater Extraction and Treatment System

Laboratory analytical results for water samples collected at the influent and effluent sample tap locations from the Fibers Groundwater Extraction and Treatment System on November 4, 2016 are presented below. The system average effluent flow rate at the time the samples were collected was 386 gallons per minute (gpm). Sample results indicate that the treatment system is operating in compliance with operating parameters pursuant to the Consent Decree.

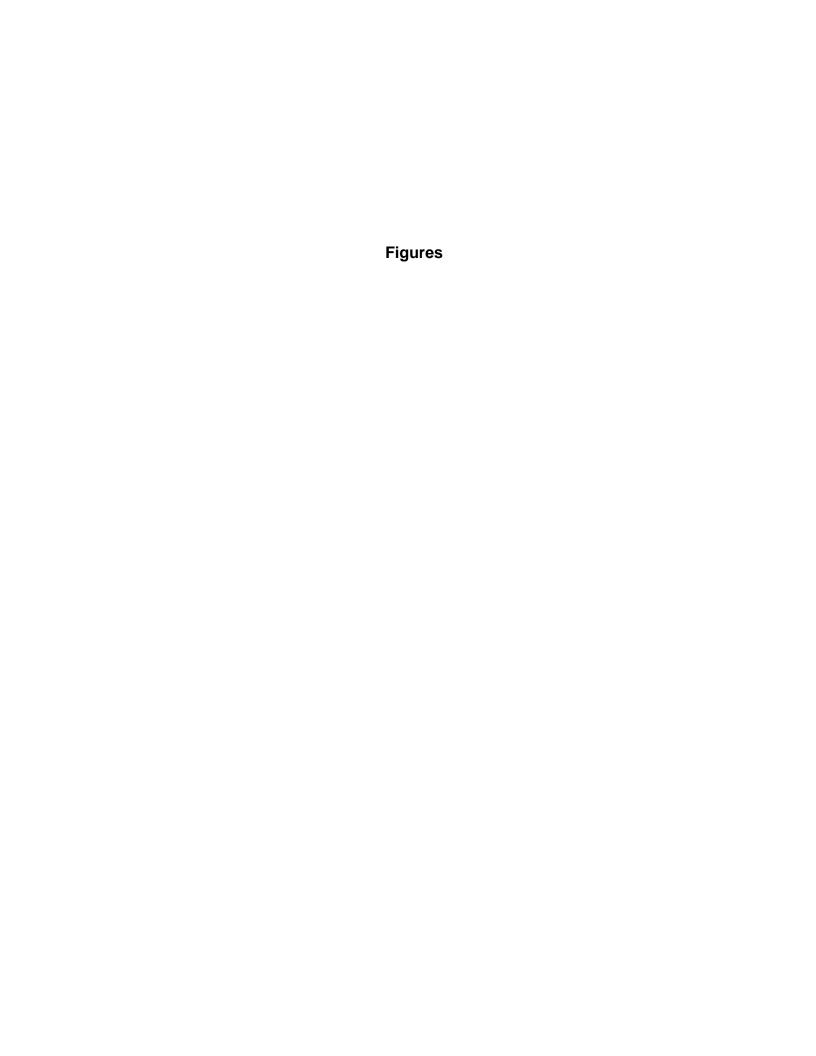
		VOC (μg/L)					
		Sam	ple ID				
Compound	EFF-20161104	20161104	INF-20161104	TB-20161104			
Tetrachloroethene	ND	ND	7.7	ND			
Trichloroethene	ND	ND	ND	ND			
Cis-1,2-dichloroethene	ND	ND	ND	ND			
Enflurane	ND	ND	1.9	ND			
Haloether 229	ND	ND	25.3	ND			
Haloether 406	ND	ND	1.1	ND			
Haloether 508	ND	ND	50.6	ND			
Haloether 528	ND	ND	1.3	ND			
Halomar	ND	ND	1.3	ND			
Isoflurane	ND	ND	98.3	ND			
Total Haloethers	ND	ND	180	ND			
Acetone	17.4 UB	15.1 UB	12.2 UB	36.5			
Other VOC	ND	ND	ND	ND			

Notes:

VOC = volatile organic compounds.

μg/L = micrograms per liter.

EFF = effluent sample.


EFFDUP = effluent duplicate sample.

INF = influent sample.

TB = trip blank.

ND = not detected at or above laboratory reporting limit.

UB = compound considered non-detect at the listed value due to associated blank contamination.

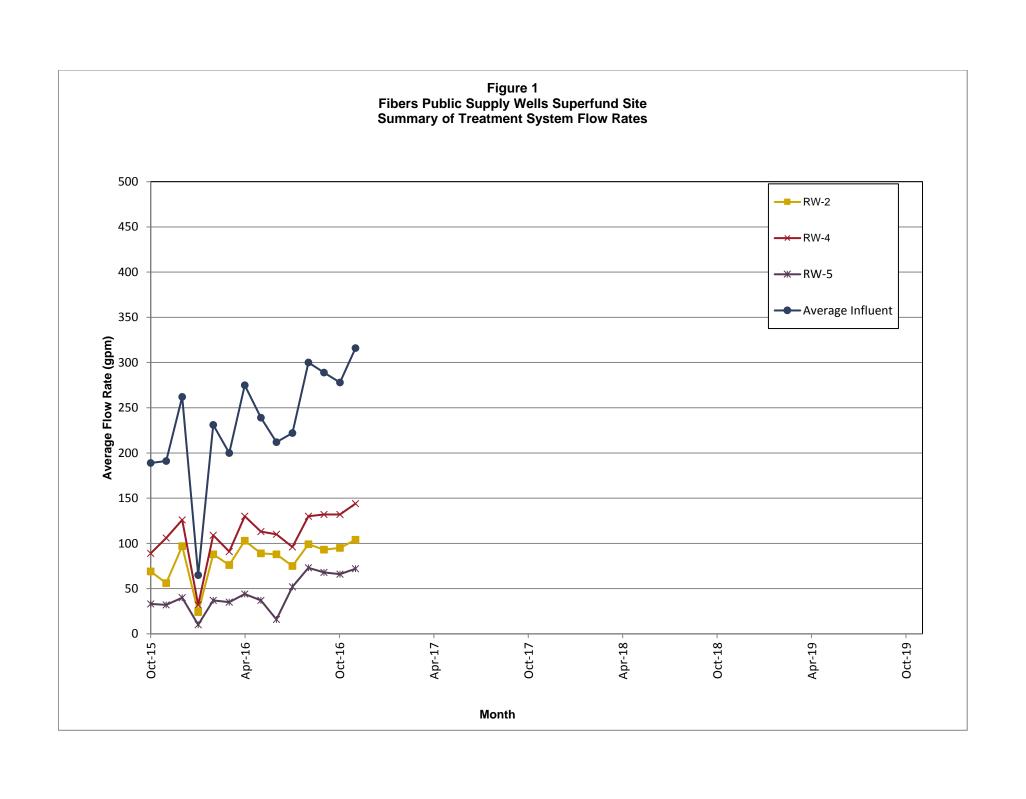
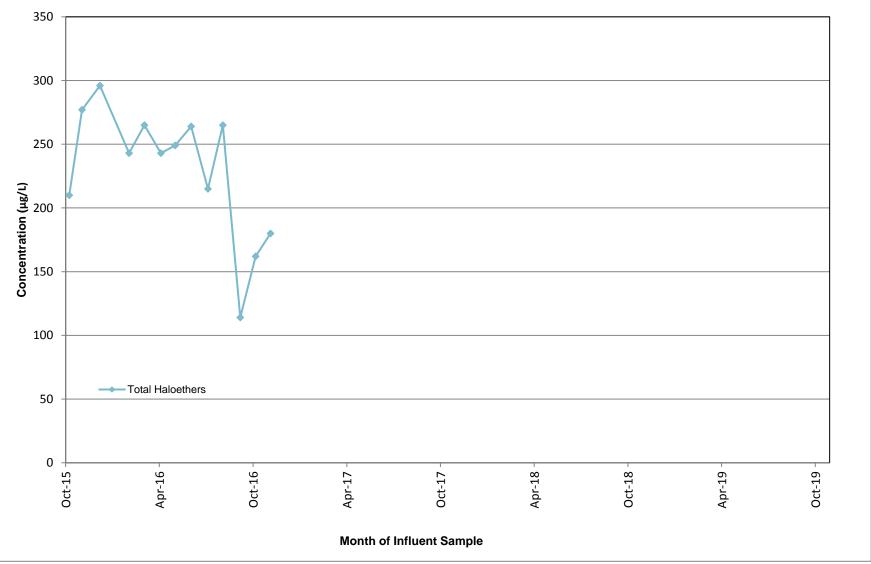



Figure 2
Fibers Public Supply Wells Superfund Site
Treatment System Influent Tetrachloroethene (PCE) Concentrations 25.0 → PCE 20.0 Concentration (µg/L) 0.01 0.01 5.0 0.0 Apr-17 Month of Influent Sample

Figure 3
Fibers Public Supply Wells Superfund Site
Treatment System Influent Total Haloethers Concentrations

Attachment 1 Data Review Report #26692R

Fibers Group

Data Review

GUAYAMA, PUERTO RICO

Volatiles Analyses

SDG #2045396 Analyses Performed By: Pace Analytical Services, Inc. New Orleans, Louisiana

Report: #26692R Review Level: Tier II

Project: CO001911.0003.1605A

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #2045396 for samples collected in association with the Fibers Group Site. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

			Sample	Parent		A	nalys	is	
Sample ID	Lab ID	Matrix	Collection Date	Sample	voc	svoc	TPH	MET	MISC
TB-20161104	2045396001	Water	11/04/2016		Х				
INF-20161104	2045396002	Water	11/04/2016		Х				
EFF-20161104	2045396003	Water	11/04/2016		Х				
EFFDUP-20161104	2045396004	Water	11/04/2016	EFF-20161104	Х				

Note:

1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location EFF-20161104.

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8260. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation		
011/01/00000	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2 s.u.		
SW-846 8260	Soil	48 hours from collection to extraction and 14 days from extraction to analysis	Cool to <6 °C.		

s.u. Standard units

All samples were analyzed within acceptable holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the reporting limit (RL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the RL, with the exception of the compounds listed in the following table. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
INF-20161104 EFF-20161104 EFFDUP-20161104	Acetone (TB)	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration

RL Reporting limit

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
EFF-20161104	Carbon disulfide	>UL	AC
EFF-20101104	Styrene	<10%	<10%

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper central limit (LIL)	Non-detect	No Action
> the upper control limit (UL)	Detect	J
< the lower central limit /LL) but > 100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
1076	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NO ACION

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
EFF-20161104	Haloether 229

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
\$111	Non-detect	UJ
> UL	Detect	J

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
EFF-20161104/ EFFDUP-20161104	All compounds	U	U	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260	Repo	orted		mance ptable	Not	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROMETRY	Y (GC/MS)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		X		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment/Field blanks					Х	
C. Trip blanks		Х	Х			
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS) %R		Х	Х			
Matrix Spike Duplicate (MSD) %R		Х	Х			
MS/MSD Precision RPD		Х	Х			
Field/Laboratory Duplicate Sample RPD		Х		Х		
Surrogate Spike %R		Х		Х		
Dilution Factor		Х		Х		
Moisture Content					Х	

%R Percent recovery
RPD Relative percent difference
%RSD Relative standard deviation

Percent difference

VALIDATION PERFORMED BY: Joseph C. Houser

SIGNATURE:

DATE: November 23, 2016

PEER REVIEW: Dennis Capria

DATE: November 30, 2016

CHAIN OF CUSTODY/ ANNOTATED SAMPLE ANALYSIS DATA SHEETS

Project:

Fibers Public Supply Wells

Pace Project No.:

2045396

Sample: TB-20161104	Lab ID:	2045396001	Collected:	11/04/	16 00:00	Received:	11/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical I	Method: EPA 50	030B/8260		_				
Acetone	36.5	ug/L		4.0	1		11/09/16 12:47	67-64-1	
Acrolein	ND	ug/L		8.0	1		11/09/16 12:47	and the second second second	
Acrylonitrile	ND	ug/L		4.0	1		11/09/16 12:47	Section Representation	
Benzene	ND	ug/L		1.0	1		11/09/16 12:47		
Bromodichloromethane	ND	ug/L		1.0	1		11/09/16 12:47		
Bromoform	ND			1.0	1		11/09/16 12:47		
Bromomethane	ND			1.0	1		11/09/16 12:47		
2-Butanone (MEK)	ND			2.0	1		11/09/16 12:47		
Carbon disulfide	ND			1.0	1		11/09/16 12:47		
Carbon tetrachloride	ND			1.0	1		11/09/16 12:47		
Chlorobenzene	ND	- 3		1.0	1		11/09/16 12:47		
Chloroethane	ND	9		1.0	1		11/09/16 12:47		
Chloroform	ND			1.0	1				
Chloromethane	ND			1.0	1		11/09/16 12:47		
Dibromochloromethane	ND			1.0	1		11/09/16 12:47		
Dibromomethane	ND	- 3		1.0	1		11/09/16 12:47		
1,1-Dichloroethane	ND	9		1.0	1		11/09/16 12:47		
1,2-Dichloroethane	ND	- 3		1.0	1		11/09/16 12:47		
1,1-Dichloroethene	ND						11/09/16 12:47		
cis-1,2-Dichloroethene	ND	0		1.0	1		11/09/16 12:47		
trans-1,2-Dichloroethene	ND	ug/L		1.0	1		11/09/16 12:47		
1,2-Dichloropropane	ND	ug/L		1.0	1		11/09/16 12:47		
cis-1,3-Dichloropropene		ug/L		1.0	1		11/09/16 12:47		
trans-1,3-Dichloropropene	ND	ug/L		1.0	1		11/09/16 12:47		
Enflurane	ND	ug/L		1.0	1		11/09/16 12:47		
Ethylbenzene	ND	ug/L		1.0	1		11/09/16 12:47		
Haloether 229	ND	ug/L		1.0	1		11/09/16 12:47	100-41-4	
	ND	ug/L		1.0	1		11/09/16 12:47		
Haloether 406	ND	ug/L		1.0	1		11/09/16 12:47		
Haloether 421	ND	ug/L		1.0	1		11/09/16 12:47		
Haloether 427	ND	ug/L		1.0	1		11/09/16 12:47		
Haloether 428	ND	ug/L		1.0	1		11/09/16 12:47		
Haloether 508	ND	ug/L		1.0	1 :		11/09/16 12:47		
Haloether 528	. ND	ug/L		1.0	1		11/09/16 12:47		
Halomar	ND	ug/L		1.0	1		11/09/16 12:47		
2-Hexanone	ND	ug/L		2.0	1		11/09/16 12:47	591-78-6	
soflurane	ND	ug/L		1.0	1		11/09/16 12:47		
Methoxyflurane	ND	ug/L		1.0	1		11/09/16 12:47	76-38-0	
Methylene Chloride	ND	ug/L		5.0	1		11/09/16 12:47	75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L		2.0	1		11/09/16 12:47	108-10-1	
Styrene	ND	ug/L		1.0	1		11/09/16 12:47		
,1,2,2-Tetrachloroethane	ND	ug/L		1.0	1		11/09/16 12:47		
etrachloroethene	ND	ug/L		1.0	1		11/09/16 12:47		
oluene .	ND	ug/L		1.0	1		11/09/16 12:47		
otal Haloether	ND	ug/L		1.0	1		11/09/16 12:47	. 30 00 0	
,1,1-Trichloroethane	ND	ug/L		1.0	1		11/09/16 12:47	71-55-6	
,1,2-Trichloroethane	ND	ug/L		1.0	1		11/09/16 12:47		
richloroethene	ND	ug/L		1.0	1		11/09/16 12:47		

Project:

Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

Sample: TB-20161104	Lab ID:	2045396001	Collected:	11/04/	16 00:00	Received:	11/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV HALOETHERS	Analytical	Method: EPA 5	030B/8260						
Trichlorofluoromethane	NE	ug/L		1.0	1		11/09/16 12:47	7 75-69-4	
1,2,3-Trichloropropane	NE	ug/L		1.0	1		11/09/16 12:47	7 96-18-4	
1,1,2-Trichlorotrifluoroethane	NE	ug/L		1.0	1		11/09/16 12:47		
Vinyl chloride	NE			1.0	1		11/09/16 12:47		
m&p-Xylene	NE	ug/L		2.0	1			7 179601-23-1	
o-Xylene	NE			1.0	1		11/09/16 12:47		
Surrogates							11.007.10 12.17	00 17 0	
Toluene-d8 (S)	101	%.	7	79-119	1		11/09/16 12:47	2037-26-5	
4-Bromofluorobenzene (S)	97	%.	6	8-124	1		11/09/16 12:47	460-00-4	
Dibromofluoromethane (S)	100	%.	7	2-126	1		11/09/16 12:47	1868-53-7	
Sample: INF-20161104	Lab ID:	2045396002	Collected:	11/04/1	6 14:45	Received:	11/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Report		DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical N	Method: EPA 50				- roparou	- Allalyzou	0/10/110.	
Acetone	5		,000,0200	4.0					. D
Acrolein	12.2			4.0	1		11/09/16 13:05		UB
Acrylonitrile	ND	9		8.0	1		11/09/16 13:05		
Benzene	ND	ug/L		4.0	1		11/09/16 13:05	: - : : : : : : : : : : : : : : : : : :	
Bromodichloromethane	ND	ug/L		1.0	1		11/09/16 13:05		
Bromoform	ND	ug/L		1.0	1		11/09/16 13:05		
Bromomethane	ND	ug/L		1.0	1		11/09/16 13:05		
2-Butanone (MEK)	ND	ug/L		1.0	1		11/09/16 13:05		
Carbon disulfide	ND	ug/L		2.0	1		11/09/16 13:05		
Carbon tetrachloride	ND	ug/L		1.0	1		11/09/16 13:05		
Chlorobenzene	ND	ug/L		1.0	1		11/09/16 13:05		
Chloroethane	ND	ug/L		1.0	1		11/09/16 13:05		
Chloroform	ND	ug/L		1.0	1		11/09/16 13:05		
Chloromethane	ND	ug/L		1.0	1		11/09/16 13:05		
Dibromochloromethane	ND	ug/L		1.0	1		11/09/16 13:05		
Dibromomethane	ND	ug/L		1.0	1		11/09/16 13:05		
1,1-Dichloroethane	ND	ug/L		1.0	1		11/09/16 13:05		
1,2-Dichloroethane	ND	ug/L		1.0	1		11/09/16 13:05		
1,1-Dichloroethene	ND	ug/L		1.0	1		11/09/16 13:05		
cis-1.2-Dichloroethene	ND	ug/L		1.0	1		11/09/16 13:05		
	ND	ug/L		1.0	1		11/09/16 13:05		
rans-1,2-Dichloroethene I,2-Dichloropropane	ND	ug/L		1.0	1		11/09/16 13:05		
cis-1,3-Dichloropropene	ND	ug/L		1.0	1		11/09/16 13:05		
rans-1,3-Dichloropropene	ND	ug/L		1.0	1		11/09/16 13:05		
Enflurane	ND 10	ug/L		1.0	1		11/09/16 13:05		
Ethylbenzene	1.9	ug/L		1.0	1		11/09/16 13:05		
triyibenzene Haloether 229	ND	ug/L		1.0	1		11/09/16 13:05	100-41-4	
Haloether 406	25.3	ug/L		1.0	1		11/09/16 13:05		
Haloether 406	1.1	ug/L		1.0	1		11/09/16 13:05		
Haloether 427	ND	ug/L		1.0	1		11/09/16 13:05		
140 140 (16) (17)	ND	ug/L		1.0	1		11/09/16 13:05		

Project:

Fibers Public Supply Wells

Pace Project No.: 2045396

## Analytical Method: EPA 5030B/8260 ## Haloether 428	Sample: INF-20161104	Lab ID:	2045396002	Collected	: 11/04/	16 14:45	Received:	11/08/16 08:15	Matrix: Wate	r
Haloether 428	Parameters	Results	Units	Repo	ort Limit	DF	Prepared	Analyzed	CAS No	. Qua
Haloether 508	8260 MSV HALOETHERS	Analytical	Method: EPA 5	030B/8260						
Haloether 508	Haloether 428	NE) ug/L		1.0	1		11/09/16 13:0	5	
Haloether 528	Haloether 508	50.6	32		1.0	1				
Halomar	Haloether 528	1.3								
2-Hexanone ND ug/L 1.0 1 11/09/16 13:05 591-78-8 Isoflurane 98.3 ug/L 1.0 1 11/09/16 13:05 Fo-38-0 Methoxyflurane ND ug/L 1.0 1 11/09/16 13:05 Fo-38-0 Methoxyflurane ND ug/L 5.0 1 11/09/16 13:05 Fo-38-0 Methoxyflurane ND ug/L 5.0 1 11/09/16 13:05 Fo-38-0 Methoxyflurane ND ug/L 2.0 1 11/09/16 13:05 Fo-38-0 Methoxyflurane ND ug/L 1.0 1 11/09/16 13:05 Fo-39-2 Hothorephere ND ug/L 1.0 1 11/09/16 13:05 Fo-34-5 Istrachloroethane ND ug/L 1.0 1 11/09/16 13:05 108-88-3 Fotal Halaether 180 ug/L 1.0 1 11/09/16 13:05 Fo-34-5 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-5 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-5 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-6 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-1 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fo-90-1 Fotal Halaether ND ug/L 1.0 1 11/09/16 13:05 Fotal Halaether ND	Halomar	1.3								
Softurane 98.3 yg/L 1.0 1 11/09/16 13:05 76-38-0 Methylane ND yg/L 1.0 1 11/09/16 13:05 76-38-0 Methylane Chloride ND yg/L 5:0 1 11/09/16 13:05 75-59-2 1-Methyl-2-pentanone (MIBK) ND yg/L 2:0 1 11/09/16 13:05 75-59-2 1-Methyl-2-pentanone (MIBK) ND yg/L 1:0 1 11/09/16 13:05 76-34-5 11/12-2-Fetrachloroethane ND yg/L 1:0 1 11/09/16 13:05 79-34-5 11/12-2-Fetrachloroethane ND yg/L 1:0 1 11/09/16 13:05 79-34-5 12-12-4-6 12-12-12-4-5 12-12-4-5 12-12-4-5 12-12-4-5 12-12-12-4-5 12-12-4-	2-Hexanone	ND								
Methoxyfurane ND ug/L 5.0 1 11/09/16 13:05 76-38-0 Methylene Chloride ND ug/L 5.0 1 11/09/16 13:05 76-09-2 4-Methyl-2-pentanone (MIBK) ND ug/L 1.0 1 11/09/16 13:05 76-09-2 4-Methyl-2-pentanone (MIBK) ND ug/L 1.0 1 11/09/16 13:05 108-10-1 Styrene ND ug/L 1.0 1 11/09/16 13:05 108-10-1 Styrene ND ug/L 1.0 1 11/09/16 13:05 79-34-5 Tetrachloroethene 7.7 ug/L 1.0 1 11/09/16 13:05 79-34-5 Tetrachloroethene ND ug/L 1.0 1 11/09/16 13:05 79-34-5 Total Haloether 180 ug/L 1.0 1 11/09/16 13:05 79-34-5 Total Haloether 180 ug/L 1.0 1 11/09/16 13:05 77-55-6 1,1,1-Trichloroethane ND ug/L 1.0 1 11/09/16 13:05 77-00-5 Trichloroethene ND ug/L 1.0 1 11/09/16 13:05 79-00-5 Trichloroethene ND ug/L 1.0 1 11/09/16 13:05 79-00-5 Trichloroethene ND ug/L 1.0 1 11/09/16 13:05 79-00-6 Trichloroethene ND ug/L 1.0 1 11/09/16 13:05 79-01-6 Trichloroethene ND ug/L 1.0 1 11/09/16 13:05 78-69-4 1.2,3-Trichloroethane ND ug/L 1.0 1 11/09/16 13:05 78-69-4 1.2,3-Trichloroethane ND ug/L 1.0 1 11/09/16 13:05 78-01-4 1.1,1-Trichloroethane ND ug/L 1.0 1 11/09/16 12:29 75-27-4 1.1,1-Trichloroeth	Isoflurane	98.3								
Methylene Chloride	Methoxyflurane									
## AMENING CONTRIBLY CONTR			Ü							
Styrene ND ug/L 1.0 1 11/09/16 13:05 79-34-5	4-Methyl-2-pentanone (MIBK)									
1,1,2,2-Tetrachloroethane			_							
Terrachloroethene			- 3 -							
Toluene ND ug/L 1.0 1 11/09/16 13.05 12-71-64 Toluene ND ug/L 1.0 1 11/09/16 13.05 12-71-64 Toluene ND ug/L 1.0 1 11/09/16 13.05 12-71-65-6 Total Haloether 180 ug/L 1.0 1 11/09/16 13.05 71-55-6 1.1.2-Trichloroethane ND ug/L 1.0 1 11/09/16 13.05 79-00-5 Trichloroethane ND ug/L 1.0 1 11/09/16 13.05 79-00-5 Trichloroethane ND ug/L 1.0 1 11/09/16 13.05 79-00-5 Trichloroethane ND ug/L 1.0 1 11/09/16 13.05 79-00-6 Trichlorofuloromethane ND ug/L 1.0 1 11/09/16 13.05 79-00-6 Trichlorofuloromethane ND ug/L 1.0 1 11/09/16 13.05 96-18-4 1.2.3-Trichloropropane ND ug/L 1.0 1 11/09/16 13.05 96-18-4 1.1.2-Trichlorotrifluoroethane ND ug/L 1.0 1 11/09/16 13.05 76-13-1 1/1/19/16 13.05 76			9							
Total Haloether			•							
1,1,1-Trichloroethane			-							
1,1,2-Trichloroethane			9							
Frichloroethene ND ug/L 1.0 1 11/09/16 13:05 78-01-6 Frichlorofuloromethane ND ug/L 1.0 1 11/09/16 13:05 78-01-6 Frichlorofuloromethane ND ug/L 1.0 1 11/09/16 13:05 78-91-4 12,3-Trichloroptropane ND ug/L 1.0 1 11/09/16 13:05 78-91-4 12,3-Trichloroptrifluoroethane ND ug/L 1.0 1 11/09/16 13:05 76-13-1 1/09/1			•							
Trichlorofluoromethane			9							
2,3-Trichloropropane			3 -							
1,2-Trichlorotrifluoroethane										
Vinyl chloride			- 3 -							
m8p-xylene			3							
ND	•		9							
Surrogates 10 10 10 10 10 10 10 1			•							-1
Toluene-d8 (S) 100 %. 79-119 1 11/09/16 13:05 2037-26-5 1-Bromofluorobenzene (S) 99 %. 68-124 1 11/09/16 13:05 460-00-4 11/09/16 13:05 1868-53-7 1000000000000000000000000000000000000		ND	ug/L		1.0	1		11/09/16 13:05	5 95-47-6	
Percentage Section S	NAME OF THE OF THE PARTY OF THE	400	0/		70 440	-			dia dia Angelia Angelia	
Dibromofluoromethane (S) 101 %. 72-126 1 11/09/16 13:05 1868-53-7 Complex EFF-20161104 Lab ID: 2045396003 Collected: 11/04/16 15:09 Received: 11/08/16 08:15 Matrix: Water										
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quantification Quanti										
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quadratical Method: EPA 5030B/8260	Distromondoromethane (5)	101	%.		72-126	1		11/09/16 13:05	1868-53-7	
Analytical Method: EPA 5030B/8260 Acetone 17.4 ug/L ND	Sample: EFF-20161104	Lab ID: 2	2045396003	Collected:	11/04/1	6 15:09	Received:	11/08/16 08:15	Matrix: Water	
17.4	Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
Acetone 17.4 ug/L 4.0 1 11/09/16 12:29 67-64-1 US Acetone ND ug/L 8.0 1 11/09/16 12:29 107-02-8 ND ug/L 4.0 1 11/09/16 12:29 107-13-1 ND ug/L 1.0 1 11/09/16 12:29 107-13-1 ND ug/L 1.0 1 11/09/16 12:29 75-27-4 ND ug/L 1.0 1 11/09/16 12:29 75-27-4 ND ug/L 1.0 1 11/09/16 12:29 75-25-2 ND ug/L 1.0 1 11/09/16 12:29 75-25-2 ND ug/L 1.0 1 11/09/16 12:29 75-25-2 ND ug/L 1.0 1 11/09/16 12:29 75-33-3 ND ug/L 2.0 1 11/09/16 12:29 75-15-0 M1 ND ug/L 1.0 1 11/09/16 12:29 75-03-5 ND ug/L 1.0 1 11/09/16 12:29 75-00-3 ND ug/L 1.0 1 11/09/16 12:29 75-00-3	260 MSV HALOETHERS	Analytical M	fethod: EPA 50	30B/8260						
ND	cetone				4.0	1		11/09/16 12:20	67-64-1	UTS
ND	crolein		-							02
ND	crylonitrile									
romodichloromethane ND ug/L 1.0 1 11/09/16 12:29 75-27-4 romoform ND ug/L 1.0 1 11/09/16 12:29 75-27-4 romomethane ND ug/L 1.0 1 11/09/16 12:29 75-25-2 romomethane ND ug/L 1.0 1 11/09/16 12:29 74-83-9 romomethane ND ug/L 2.0 1 11/09/16 12:29 78-93-3 arbon disulfide ND ug/L 1.0 1 11/09/16 12:29 75-15-0 M1 arbon tetrachloride ND ug/L 1.0 1 11/09/16 12:29 56-23-5 hlorobenzene ND ug/L 1.0 1 11/09/16 12:29 75-00-3			-							
romoform ND ug/L 1.0 1 11/09/16 12:29 75-25-2 romomethane ND ug/L 1.0 1 11/09/16 12:29 75-25-2 romomethane ND ug/L 1.0 1 11/09/16 12:29 74-83-9 report of sulfide ND ug/L 1.0 1 11/09/16 12:29 78-93-3 rarbon disulfide ND ug/L 1.0 1 11/09/16 12:29 75-15-0 report of sulfide ND ug/L 1.0 1 11/09/16 12:29 75-15-0 report of sulfide ND ug/L 1.0 1 11/09/16 12:29 75-00-3 report of sulfide ND ug/L 1.0 1 11/09/16 12:29 75-00-3										
romomethane ND ug/L 1.0 1 11/09/16 12:29 74-83-9 -Butanone (MEK) ND ug/L 2.0 1 11/09/16 12:29 78-93-3 arbon disulfide ND ug/L 1.0 1 11/09/16 12:29 75-15-0 M1 arbon tetrachloride ND ug/L 1.0 1 11/09/16 12:29 56-23-5 hlorobenzene ND ug/L 1.0 1 11/09/16 12:29 108-90-7 hlorothane ND ug/L 1.0 1 11/09/16 12:29 75-00-3										
Butanone (MEK) ND ug/L arbon disulfide ND ug/L 1.0 1 11/09/16 12:29 78-93-3 11/09/16 12:29 75-15-0 M1 arbon tetrachloride ND ug/L 1.0 1 11/09/16 12:29 56-23-5 ND ug/L 1.0 1 11/09/16 12:29 108-90-7 ND ug/L 1.0 1 11/09/16 12:29 75-00-3										
arbon disulfide ND ug/L 1.0 1 11/09/16 12:29 75-15-0 M1 arbon tetrachloride ND ug/L 1.0 1 11/09/16 12:29 56-23-5 hlorobenzene ND ug/L 1.0 1 11/09/16 12:29 108-90-7 hloroethane ND ug/L 1.0 1 11/09/16 12:29 75-00-3			· · · · · · · · · · · · · · · · · · ·							
arbon tetrachloride ND ug/L 1.0 1 11/09/16 12:29 56-23-5 hlorobenzene ND ug/L 1.0 1 11/09/16 12:29 108-90-7 hloroethane ND ug/L 1.0 1 11/09/16 12:29 75-00-3			-							144
hlorobenzene ND ug/L 1.0 1 11/09/16 12:29 108-90-7 hloroethane ND ug/L 1.0 1 11/09/16 12:29 75-00-3										MI
hloroethane ND ug/L 1.0 1 11/09/16 12:29 75-00-3			7.0							
11/06/10 12.25 /3-00-3			_							
ND ug/L 1.0 1 11/09/16 12:29 67-66-3										
	MINIOTOTOTIII	ND	ug/L		1.0	1		11/09/16 12:29	67-66-3	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

Fibers Public Supply Wells

Pace Project No.:

Date: 11/16/2016 05:16 PM

2045396

Sample: EFF-20161104	Lab ID:	2045396003	Collected:	11/04/	16 15:09	Received:	11/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical	Method: EPA 50	030B/8260						
Chloromethane	NI	D ug/L		1.0	1		11/09/16 12:2	9 74-87-3	
Dibromochloromethane	NI	D ug/L		1.0	1		11/09/16 12:29	9 124-48-1	
Dibromomethane	NI	D ug/L		1.0	1		11/09/16 12:29	9 74-95-3	
1,1-Dichloroethane	N	D ug/L		1.0	1		11/09/16 12:29	75-34-3	
1,2-Dichloroethane	N	O ug/L		1.0	1		11/09/16 12:29		
1,1-Dichloroethene	NE	D ug/L		1.0	1		11/09/16 12:29		
cis-1,2-Dichloroethene	N	D ug/L		1.0	1		11/09/16 12:29		
trans-1,2-Dichloroethene	N	O ug/L		1.0	1		11/09/16 12:29		
1,2-Dichloropropane	N			1.0	1		11/09/16 12:29		
cis-1,3-Dichloropropene	N	O ug/L		1.0	1		11/09/16 12:29		
trans-1,3-Dichloropropene	N			1.0	1		11/09/16 12:29		
Enflurane	NE			1.0	1		11/09/16 12:29		
Ethylbenzene	NE			1.0	1		11/09/16 12:29		
Haloether 229	NE	_		1.0	1		11/09/16 12:29		R1-1/
Haloether 406	NE			1.0	1		11/09/16 12:29		KI U
Haloether 421	NE	0		1.0	1		11/09/16 12:29		
Haloether 427	NE			1.0	1		11/09/16 12:29		
Haloether 428	NE			1.0	1		11/09/16 12:29		
Haloether 508	NE	- 3		1.0	1		11/09/16 12:29		
Haloether 528	NE			1.0	1		11/09/16 12:29		
Halomar	NE			1.0	1		11/09/16 12:29		
2-Hexanone	NE	-		2.0	1		11/09/16 12:29		
Isoflurane	NE	0		1.0	1		11/09/16 12:29		
Methoxyflurane	NE	- 3		1.0	1		11/09/16 12:29		
Methylene Chloride	NE	- 3 -		5.0	1		11/09/16 12:29		
4-Methyl-2-pentanone (MIBK)	ND			2.0	1		11/09/16 12:29		
Styrene	NE			1.0	_1		11/09/16 12:29		w D
1,1,2,2-Tetrachloroethane	ND	- 3. –		1.0	1				-M1- R
Tetrachloroethene	ND			1.0	1		11/09/16 12:29		
Toluene	ND	3		1.0	1		11/09/16 12:29		
Total Haloether	ND	-3		1.0	1		11/09/16 12:29		
1,1,1-Trichloroethane	ND	-3		1.0	1		11/09/16 12:29		
1,1,2-Trichloroethane	ND	- 3		1.0	1		11/09/16 12:29		
Trichloroethene	ND						11/09/16 12:29		
Trichlorofluoromethane	ND			1.0	1 1		11/09/16 12:29		
1,2,3-Trichloropropane	ND			1.0			11/09/16 12:29		
1,1,2-Trichlorotrifluoroethane	ND	- 3. –		1.0	1		11/09/16 12:29		
Vinyl chloride	ND ND	- 3		1.0	1		11/09/16 12:29		
m&p-Xylene	ND ND	-		1.0	1		11/09/16 12:29		
o-Xylene		- 3		2.0	1		11/09/16 12:29		
Surrogates	ND	ug/L		1.0	1		11/09/16 12:29	95-47-6	
Toluene-d8 (S)	99	%.	7	0 110	1		11/00/10 10 00	0007.00.5	
4-Bromofluorobenzene (S)	99			9-119	1		11/09/16 12:29		
Dibromofluoromethane (S)	102			8-124	1		11/09/16 12:29		
Jibromondomethane (2)	102	%.	72	2-126	1		11/09/16 12:29	1868-53-7	

Project:

Fibers Public Supply Wells

Pace Project No.: 2045396

Sample: EFFDUP-20161104	Lab ID:	2045396004	Collected:	11/04/	16 15:09	Received:	11/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical	Method: EPA 50	030B/8260						
Acetone	15.1	1 ug/L		4.0	1		11/09/16 13:22	67-64-1	UB
Acrolein	NE) ug/L		8.0	1		11/09/16 13:22		00
Acrylonitrile	NE) ug/L		4.0	1		11/09/16 13:22		
Benzene	NE	ug/L		1.0	1		11/09/16 13:22		
Bromodichloromethane	NE	ug/L		1.0	1		11/09/16 13:22		
Bromoform	NE			1.0	1		11/09/16 13:22		
Bromomethane	NE	ug/L		1.0	1		11/09/16 13:22		
2-Butanone (MEK)	NE	ug/L		2.0	1		11/09/16 13:22		
Carbon disulfide	NE	ug/L		1.0	1		11/09/16 13:22		
Carbon tetrachloride	ND	A 100-2000		1.0	1		11/09/16 13:22		
Chlorobenzene	ND			1.0	1		11/09/16 13:22		
Chloroethane	ND	0		1.0	1		11/09/16 13:22		
Chloroform	ND			1.0	1		11/09/16 13:22		
Chloromethane	ND			1.0	1				
Dibromochloromethane	ND	•		1.0	1		11/09/16 13:22		
Dibromomethane	ND	9		1.0	1		11/09/16 13:22		
1,1-Dichloroethane	ND			1.0	1		11/09/16 13:22		
1,2-Dichloroethane	ND	9		1.0	1		11/09/16 13:22		
1,1-Dichloroethene	ND	-		1.0	1		11/09/16 13:22		
cis-1,2-Dichloroethene	ND			1.0	1		11/09/16 13:22		
trans-1,2-Dichloroethene	ND	- 0		1.0	1		11/09/16 13:22		
1,2-Dichloropropane	ND	3			1		11/09/16 13:22		
cis-1,3-Dichloropropene	ND	3		1.0			11/09/16 13:22		
trans-1,3-Dichloropropene	ND	•		1.0	1		11/09/16 13:22		
Enflurane	ND	9		1.0	1		11/09/16 13:22		
Ethylbenzene	ND	9		1.0	1		11/09/16 13:22	Company of the second	
Haloether 229	ND	9		1.0	1		11/09/16 13:22	100-41-4	
Haloether 406	ND	ug/L		1.0	1		11/09/16 13:22		
Haloether 421		ug/L		1.0	1		11/09/16 13:22		
Haloether 427	ND	ug/L		1.0	1		11/09/16 13:22		
Haloether 428	ND	ug/L		1.0	1		11/09/16 13:22		
Haloether 508	ND	ug/L		1.0	1		11/09/16 13:22		
Haloether 528	ND	ug/L		1.0	1		11/09/16 13:22		
Halomar	ND	ug/L		1.0	1		11/09/16 13:22		
2-Hexanone	ND	ug/L		1.0	1		11/09/16 13:22		
soflurane	ND	ug/L		2.0	1		11/09/16 13:22	591-78-6	
	ND	ug/L		1.0	1		11/09/16 13:22		
Methoxyflurane Methylana Chlorida	ND	ug/L		1.0	1		11/09/16 13:22		
Methylene Chloride	ND	ug/L		5.0	1		11/09/16 13:22	75-09-2	
I-Methyl-2-pentanone (MIBK)	ND	ug/L		2.0	1		11/09/16 13:22	108-10-1	
Styrene	ND	ug/L		1.0	1		11/09/16 13:22		
,1,2,2-Tetrachloroethane	ND	ug/L		1.0	1		11/09/16 13:22	79-34-5	
etrachloroethene	ND	ug/L		1.0	1		11/09/16 13:22	127-18-4	
oluene	ND	ug/L		1.0	1		11/09/16 13:22	108-88-3	
otal Haloether	ND	ug/L		1.0	1		11/09/16 13:22		
,1,1-Trichloroethane	ND	ug/L		1.0	1		11/09/16 13:22	71-55-6	
,1,2-Trichloroethane	ND	ug/L		1.0	1		11/09/16 13:22	79-00-5	
richloroethene	ND	ug/L		1.0	1		11/09/16 13:22	79-01-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:

Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

Sample: EFFDUP-20161104	Lab ID: 204	5396004	Collected: 11/04/1	6 15:09	Received: 1	1/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Meth	nod: EPA 50	30B/8260					
Trichlorofluoromethane	ND	ug/L	1.0	1		11/09/16 13:22	2 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/09/16 13:22		
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		11/09/16 13:22		
Vinyl chloride	ND	ug/L	1.0	1		11/09/16 13:22		
m&p-Xylene	ND	ug/L	2.0	1		11/09/16 13:22	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/09/16 13:22		
Surrogates								
Toluene-d8 (S)	98	%.	79-119	1		11/09/16 13:22	2037-26-5	
4-Bromofluorobenzene (S)	97	%.	68-124	1		11/09/16 13:22	460-00-4	
Dibromofluoromethane (S)	100	%.	72-126	1		11/09/16 13:22		

Pace Analytical

MO#: 2045396 CHAIN-OF-CUSTODY,

The Chain-of-Custody is a LEGAL [

Samples SAMPLE CONDITIONS 0 i col Custedy Regulatory Agency State / Location Весеілед оп CERCLA Residual Chlorine (Y/V) Page: D ni 9MBT 11-8-14 0215 TIME EPA 300 0 Chloride Requested Analysis Filtered (Y/N) DATE RSK 175 Methane EPA 6010 Total Metals (Fe, Mn) EPA 6010 Dissolved Metals (Fe, Mr eleliu2 50,09,8120 MT2A justin stock@pacelabs.com 201 83108 TOC CCEPTED BY / AFFILIATION SM 2320B Alkalinity YXXX EPA 8260B Haloethers Analyses Test N/A Accounts Payable Methanol COSSEN Nasson Preservatives Andry Colon ARCADIS HOPN XXXX нсі Pace Project Manager Company Name: CONH Invoice Infor H⁵2O⁴ Pace Quote 3,0 Section C TIME 11-8-10-0815 Jupreserved 4000000 SAMPLER NAME AND SIGNATURE # OF CONTAINERS 11/00/16 11-7-16 SAMPLE TEMP AT COLLECTION PRINT Name of SAMPLER: DATE 1/04/1/509 1628 7 B 1/2 10 12 MS 100/1 1509 11 CM 150 11 mile 1509 TIME END CO001911.0003 1602A Fibers Public Supply Wells DATE Accords COLLECTED cassandra.mccloud@arcadis-us.com RELINGUISHED BY / AFFILIATION gag CO001911,0003 1602/ TIME Report To David Howard
Copy To: Cassandra McCloud START 1000 3 5 9 7 O SAMPLE TYPE (G=GRAB C=COMP) M N Project Name Section B CODE DW WT WT WW SL OL OL OL OL OT TS MATRIX
Denking Water
Waste Water
Waste Water
Product
Soul/Solid
Oil
Wipe
Ant
Chhe
Tissue david.howard@arcadis-us.com 602.797.4518 Fax: EFF-MS-2060 1104 EFF MSD- 2016 1104 EFF DAP - 20 16 11 DU ADDITIONAL COMMENTS TB-2016 1104 INF- 20161104 EFE-2016 1104 (A-Z, 0-9 / , -) Sample Ids must be unique One Character per box. SAMPLE ID 410 North 44th St. Required Client Information: ARCADIS Phoenix, AZ 85008 11 12 10 7 2 9 # MBTI 3 7 8 6

Page 19 of 20

(N/A)

(N/A

Cooler

paleo

(N/A)

DATE Signed:

SIGNATURE of SAMPLER:

Attachment 2 Laboratory Analytical Report #2045396

November 16, 2016

David Howard ARCADIS 410 North 44th St. Suite 1000 Phoenix, AZ 85008

RE: Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Dear David Howard:

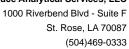
Enclosed are the analytical results for sample(s) received by the laboratory on November 08, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Justin L. Stock

justin.stock@pacelabs.com


Project Manager

Justin Stock

Enclosures

cc: Janisse Diaz, Arcadis Cassandra McCloud Elvin Varela, ARCADIS

CERTIFICATIONS

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

New Orleans Certification IDs

California Env. Lab Accreditation Program Branch:

11277CA

Florida Department of Health (NELAC): E87595 Illinois Environmental Protection Agency: 0025721 Kansas Department of Health and Environment (NELAC):

E-10266

Louisiana Dept. of Environmental Quality (NELAC/LELAP):

02006

Pennsylviania Dept. of Env Protection (NELAC): 68-04202

Texas Commission on Env. Quality (NELAC):

T104704405-09-TX

U.S. Dept. of Agriculture Foreign Soil Import: P330-10-

00119

Commonwealth of Virginia (TNI): 480246

(504)469-0333

SAMPLE SUMMARY

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2045396001	TB-20161104	Water	11/04/16 00:00	11/08/16 08:15
2045396002	INF-20161104	Water	11/04/16 14:45	11/08/16 08:15
2045396003	EFF-20161104	Water	11/04/16 15:09	11/08/16 08:15
2045396004	EFFDUP-20161104	Water	11/04/16 15:09	11/08/16 08:15

(504)469-0333

SAMPLE ANALYTE COUNT

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
2045396001	TB-20161104	EPA 5030B/8260	MLS	56	PASI-N
2045396002	INF-20161104	EPA 5030B/8260	MLS	56	PASI-N
2045396003	EFF-20161104	EPA 5030B/8260	MLS	56	PASI-N
2045396004	EFFDUP-20161104	EPA 5030B/8260	MLS	56	PASI-N

(504)469-0333

PROJECT NARRATIVE

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Method: EPA 5030B/8260

Description: 8260 MSV HALOETHERS

Client: ARCADIS

Date: November 16, 2016

General Information:

4 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 67289

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 2045396003

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 279863)
 - Carbon disulfide
 - Styrene
- MSD (Lab ID: 279864)
 - Styrene

R1: RPD value was outside control limits.

- MSD (Lab ID: 279864)
 - Haloether 229

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

Sample: TB-20161104	Lab ID: 204	5396001	Collected: 11/04/1	6 00:00	Received: 1	11/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Met	nod: EPA 50	030B/8260					
Acetone	36.5	ug/L	4.0	1		11/09/16 12:47	67-64-1	
Acrolein	ND	ug/L	8.0	1		11/09/16 12:47	107-02-8	
Acrylonitrile	ND	ug/L	4.0	1		11/09/16 12:47	107-13-1	
Benzene	ND	ug/L	1.0	1		11/09/16 12:47	71-43-2	
Bromodichloromethane	ND	ug/L	1.0	1		11/09/16 12:47		
Bromoform	ND	ug/L	1.0	1		11/09/16 12:47		
Bromomethane	ND	ug/L	1.0	1		11/09/16 12:47		
2-Butanone (MEK)	ND	ug/L	2.0	1		11/09/16 12:47		
Carbon disulfide	ND	ug/L	1.0	1		11/09/16 12:47		
Carbon tetrachloride	ND	ug/L	1.0	1		11/09/16 12:47		
Chlorobenzene	ND	ug/L	1.0	1		11/09/16 12:47		
Chloroethane	ND	ug/L	1.0	1		11/09/16 12:47		
Chloroform	ND	ug/L	1.0	1		11/09/16 12:47		
Chloromethane	ND	ug/L	1.0	1		11/09/16 12:47		
Dibromochloromethane	ND	ug/L	1.0	1		11/09/16 12:47		
Dibromomethane	ND	ug/L	1.0	1		11/09/16 12:47		
I,1-Dichloroethane	ND ND	ug/L ug/L	1.0	1		11/09/16 12:47		
I.2-Dichloroethane	ND	ug/L ug/L	1.0	1		11/09/16 12:47		
1,1-Dichloroethene	ND ND	•	1.0	1		11/09/16 12:47		
		ug/L		1				
cis-1,2-Dichloroethene	ND	ug/L	1.0			11/09/16 12:47		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1 1		11/09/16 12:47		
1,2-Dichloropropane	ND	ug/L	1.0			11/09/16 12:47		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		11/09/16 12:47		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/09/16 12:47		
Enflurane	ND	ug/L	1.0	1		11/09/16 12:47		
Ethylbenzene	ND	ug/L	1.0	1		11/09/16 12:47		
Haloether 229	ND	ug/L	1.0	1		11/09/16 12:47		
Haloether 406	ND	ug/L	1.0	1		11/09/16 12:47		
Haloether 421	ND	ug/L	1.0	1		11/09/16 12:47		
Haloether 427	ND	ug/L	1.0	1		11/09/16 12:47		
Haloether 428	ND	ug/L	1.0	1		11/09/16 12:47		
Haloether 508	ND	ug/L	1.0	1		11/09/16 12:47		
Haloether 528	ND	ug/L	1.0	1		11/09/16 12:47		
Halomar	ND	ug/L	1.0	1		11/09/16 12:47		
2-Hexanone	ND	ug/L	2.0	1		11/09/16 12:47		
soflurane	ND	ug/L	1.0	1		11/09/16 12:47		
Methoxyflurane	ND	ug/L	1.0	1		11/09/16 12:47	76-38-0	
Methylene Chloride	ND	ug/L	5.0	1		11/09/16 12:47		
1-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		11/09/16 12:47		
Styrene	ND	ug/L	1.0	1		11/09/16 12:47	100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/09/16 12:47	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		11/09/16 12:47	127-18-4	
Toluene	ND	ug/L	1.0	1		11/09/16 12:47	108-88-3	
Total Haloether	ND	ug/L	1.0	1		11/09/16 12:47		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/09/16 12:47	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/09/16 12:47		
Trichloroethene	ND	ug/L	1.0	1		11/09/16 12:47		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

Sample: TB-20161104	Lab ID: 204	5396001	Collected: 11/04/1	6 00:00	Received:	11/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Meth	od: EPA 50	030B/8260					
Trichlorofluoromethane	ND	ug/L	1.0	1		11/09/16 12:4	7 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/09/16 12:47	7 96-18-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		11/09/16 12:47	7 76-13-1	
Vinyl chloride	ND	ug/L	1.0	1		11/09/16 12:47	7 75-01-4	
m&p-Xylene	ND	ug/L	2.0	1		11/09/16 12:47	7 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/09/16 12:4	7 95-47-6	
Surrogates		. 3						
Toluene-d8 (S)	101	%.	79-119	1		11/09/16 12:47	7 2037-26-5	
4-Bromofluorobenzene (S)	97	%.	68-124	1		11/09/16 12:47	7 460-00-4	
Dibromofluoromethane (S)	100	%.	72-126	1		11/09/16 12:4	7 1868-53-7	
Sample: INF-20161104	Lab ID: 204	5396002	Collected: 11/04/1	6 14:45	Received:	11/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Meth	nod: EPA 50						
Acetone	12.2	ug/L	4.0	1		11/09/16 13:0	5 67 64 1	
Acrolein	ND	•	8.0	1		11/09/16 13:0		
		ug/L		1		11/09/16 13:0		
Acrylonitrile	ND	ug/L	4.0					
Benzene	ND	ug/L	1.0	1		11/09/16 13:0		
Bromodichloromethane	ND	ug/L	1.0	1		11/09/16 13:0		
Bromoform	ND	ug/L	1.0	1		11/09/16 13:0		
Bromomethane	ND	ug/L	1.0	1		11/09/16 13:0		
2-Butanone (MEK)	ND	ug/L	2.0	1		11/09/16 13:0		
Carbon disulfide	ND	ug/L	1.0	1		11/09/16 13:0		
Carbon tetrachloride	ND	ug/L	1.0	1		11/09/16 13:0		
Chlorobenzene	ND	ug/L	1.0	1		11/09/16 13:0		
Chloroethane	ND	ug/L	1.0	1		11/09/16 13:0		
Chloroform	ND	ug/L	1.0	1		11/09/16 13:0	5 67-66-3	
Chloromethane	ND	ug/L	1.0	1		11/09/16 13:0	5 74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		11/09/16 13:0	5 124-48-1	
Dibromomethane	ND	ug/L	1.0	1		11/09/16 13:0	5 74-95-3	
1,1-Dichloroethane	ND	ug/L	1.0	1		11/09/16 13:0	5 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		11/09/16 13:0	5 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		11/09/16 13:0	5 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/09/16 13:0	5 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/09/16 13:0	5 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		11/09/16 13:0	5 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/09/16 13:0	5 10061-02-6	
Enflurane	1.9	ug/L	1.0	1		11/09/16 13:0	5 13838-16-9	
Ethylbenzene	ND	ug/L	1.0	1		11/09/16 13:0		
Haloether 229	25.3	ug/L	1.0	1		11/09/16 13:0		
- · · · · · · · · · · · · · · · · · · ·		-				11/09/16 13:0		
Haloether 406	1.1	ua/L	1.0	1		11/09/16 13:0:)	
Haloether 406 Haloether 421	1.1 ND	ug/L ug/L	1.0	1		11/09/16 13:0		

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

Sample: INF-20161104	Lab ID: 204	5396002	Collected: 11/04/1	6 14:45	Received: 1	1/08/16 08:15 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV HALOETHERS	Analytical Met	nod: EPA 50	030B/8260					
Haloether 428	ND	ug/L	1.0	1		11/09/16 13:05		
Haloether 508	50.6	ug/L	1.0	1		11/09/16 13:05		
Haloether 528	1.3	ug/L	1.0	1		11/09/16 13:05		
Halomar	1.3	ug/L	1.0	1		11/09/16 13:05		
2-Hexanone	ND	ug/L	2.0	1		11/09/16 13:05	591-78-6	
soflurane	98.3	ug/L	1.0	1		11/09/16 13:05		
Methoxyflurane	ND	ug/L	1.0	1		11/09/16 13:05	76-38-0	
Methylene Chloride	ND	ug/L	5.0	1		11/09/16 13:05	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		11/09/16 13:05	108-10-1	
Styrene	ND	ug/L	1.0	1		11/09/16 13:05		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/09/16 13:05		
Tetrachloroethene	7.7	ug/L	1.0	1		11/09/16 13:05		
Toluene	ND	ug/L	1.0	1		11/09/16 13:05		
Total Haloether	180	ug/L	1.0	1		11/09/16 13:05		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/09/16 13:05	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/09/16 13:05		
Frichloroethene	ND	ug/L	1.0	1		11/09/16 13:05		
Trichlorofluoromethane	ND	ug/L	1.0	1		11/09/16 13:05		
1,2,3-Trichloropropane	ND ND	ug/L ug/L	1.0	1		11/09/16 13:05		
1,1,2-Trichlorotrifluoroethane	ND ND	ug/L ug/L	1.0	1		11/09/16 13:05		
Vinyl chloride	ND	•		1		11/09/16 13:05		
•	ND ND	ug/L	1.0 2.0	1				
m&p-Xylene		ug/L		1		11/09/16 13:05		
o-Xylene Surrogates	ND	ug/L	1.0	1		11/09/16 13:05	95-47-6	
Toluene-d8 (S)	100	%.	79-119	1		11/09/16 13:05	2037-26-5	
4-Bromofluorobenzene (S)	99	%.	68-124	1		11/09/16 13:05		
Dibromofluoromethane (S)	101	%.	72-126	1		11/09/16 13:05		
Sample: EFF-20161104	Lab ID: 204	5396003	Collected: 11/04/1	6 15:09	Received: 1		Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV HALOETHERS	Analytical Met	nod: EPA 50	030B/8260					
Acetone	17.4	ug/L	4.0	1		11/09/16 12:29	67-64-1	
Acrolein	ND	ug/L	8.0	1		11/09/16 12:29	107-02-8	
Acrylonitrile	ND	ug/L	4.0	1		11/09/16 12:29		
Benzene	ND	ug/L	1.0	1		11/09/16 12:29	71-43-2	
	ND	ug/L	1.0	1		11/09/16 12:29	75-27-4	
Bromodichloromethane		ug/L	1.0	1		11/09/16 12:29		
Bromodichloromethane Bromoform	ND			4		11/09/16 12:29		
Bromoform	ND ND	•	1.0	1				
Bromoform Bromomethane		ug/L	1.0 2.0	1		11/09/16 12:29		
Bromoform Bromomethane 2-Butanone (MEK)	ND	ug/L ug/L				11/09/16 12:29 11/09/16 12:29	78-93-3	M1
Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide	ND ND ND	ug/L ug/L ug/L	2.0 1.0	1		11/09/16 12:29	78-93-3 75-15-0	M1
Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	ND ND ND ND	ug/L ug/L ug/L ug/L	2.0 1.0 1.0	1 1 1		11/09/16 12:29 11/09/16 12:29	78-93-3 75-15-0 56-23-5	M1
	ND ND ND	ug/L ug/L ug/L	2.0 1.0	1 1		11/09/16 12:29	78-93-3 75-15-0 56-23-5 108-90-7	M1

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

Sample: EFF-20161104	Lab ID: 204	5396003	Collected: 11/04/1	6 15:09	Received: 1	11/08/16 08:15 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Meth	hod: EPA 50	030B/8260					
Chloromethane	ND	ug/L	1.0	1		11/09/16 12:29	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		11/09/16 12:29	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		11/09/16 12:29	74-95-3	
1,1-Dichloroethane	ND	ug/L	1.0	1		11/09/16 12:29	75-34-3	
,2-Dichloroethane	ND	ug/L	1.0	1		11/09/16 12:29	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		11/09/16 12:29		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/09/16 12:29	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/09/16 12:29	156-60-5	
,2-Dichloropropane	ND	ug/L	1.0	1		11/09/16 12:29	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		11/09/16 12:29	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/09/16 12:29	10061-02-6	
Enflurane	ND	ug/L	1.0	1		11/09/16 12:29	13838-16-9	
Ethylbenzene	ND	ug/L	1.0	1		11/09/16 12:29	100-41-4	
Haloether 229	ND	ug/L	1.0	1		11/09/16 12:29		R1
Haloether 406	ND	ug/L	1.0	1		11/09/16 12:29		
Haloether 421	ND	ug/L	1.0	1		11/09/16 12:29		
Haloether 427	ND	ug/L	1.0	1		11/09/16 12:29		
Haloether 428	ND	ug/L	1.0	1		11/09/16 12:29		
Haloether 508	ND	ug/L	1.0	1		11/09/16 12:29		
Haloether 528	ND	ug/L	1.0	1		11/09/16 12:29		
Halomar	ND	ug/L	1.0	1		11/09/16 12:29		
2-Hexanone	ND	ug/L	2.0	1		11/09/16 12:29	591-78-6	
soflurane	ND	ug/L	1.0	1		11/09/16 12:29		
Methoxyflurane	ND	ug/L	1.0	1		11/09/16 12:29	76-38-0	
Methylene Chloride	ND	ug/L	5.0	1		11/09/16 12:29	75-09-2	
1-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		11/09/16 12:29	108-10-1	
Styrene	ND	ug/L	1.0	1		11/09/16 12:29	100-42-5	M1
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/09/16 12:29	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		11/09/16 12:29	127-18-4	
Toluene	ND	ug/L	1.0	1		11/09/16 12:29	108-88-3	
Total Haloether	ND	ug/L	1.0	1		11/09/16 12:29		
,1,1-Trichloroethane	ND	ug/L	1.0	1		11/09/16 12:29	71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1		11/09/16 12:29	79-00-5	
Frichloroethene Trichloroethene	ND	ug/L	1.0	1		11/09/16 12:29	79-01-6	
richlorofluoromethane	ND	ug/L	1.0	1		11/09/16 12:29	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		11/09/16 12:29	96-18-4	
,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		11/09/16 12:29	76-13-1	
/inyl chloride	ND	ug/L	1.0	1		11/09/16 12:29	75-01-4	
n&p-Xylene	ND	ug/L	2.0	1		11/09/16 12:29	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/09/16 12:29	95-47-6	
Surrogates		•						
oluene-d8 (S)	99	%.	79-119	1		11/09/16 12:29	2037-26-5	
-Bromofluorobenzene (S)	97	%.	68-124	1		11/09/16 12:29	460-00-4	
Dibromofluoromethane (S)	102	%.	72-126	1		11/09/16 12:29	1868-53-7	

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

Sample: EFFDUP-20161104	Lab ID: 204	5396004	Collected: 11/04/1	6 15:09	Received:	11/08/16 08:15	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV HALOETHERS	Analytical Met	hod: EPA 5	030B/8260					
Acetone	15.1	ug/L	4.0	1		11/09/16 13:22	2 67-64-1	
Acrolein	ND	ug/L	8.0	1		11/09/16 13:22	2 107-02-8	
Acrylonitrile	ND	ug/L	4.0	1		11/09/16 13:22	2 107-13-1	
Benzene	ND	ug/L	1.0	1		11/09/16 13:22	2 71-43-2	
Bromodichloromethane	ND	ug/L	1.0	1		11/09/16 13:22	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/09/16 13:22	2 75-25-2	
Bromomethane	ND	ug/L	1.0	1		11/09/16 13:22	2 74-83-9	
2-Butanone (MEK)	ND	ug/L	2.0	1		11/09/16 13:22	2 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		11/09/16 13:22	2 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		11/09/16 13:22	2 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		11/09/16 13:22		
Chloroethane	ND	ug/L	1.0	1		11/09/16 13:22		
Chloroform	ND	ug/L	1.0	1		11/09/16 13:22		
Chloromethane	ND	ug/L	1.0	1		11/09/16 13:22		
Dibromochloromethane	ND	ug/L	1.0	1		11/09/16 13:22		
Dibromomethane	ND	ug/L	1.0	1		11/09/16 13:22		
.1-Dichloroethane	ND	ug/L	1.0	1		11/09/16 13:22		
,2-Dichloroethane	ND	ug/L	1.0	1		11/09/16 13:22		
,1-Dichloroethene	ND	ug/L	1.0	1		11/09/16 13:22		
sis-1,2-Dichloroethene	ND	-	1.0	1		11/09/16 13:22		
rans-1,2-Dichloroethene	ND ND	ug/L		1		11/09/16 13:22		
	ND ND	ug/L	1.0 1.0	1		11/09/16 13:22		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/09/16 13:22		
sis-1,3-Dichloropropene		ug/L				11/09/16 13:22		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1				
Enflurane	ND	ug/L	1.0	1		11/09/16 13:22		
Ethylbenzene	ND	ug/L	1.0	1		11/09/16 13:22		
Haloether 229	ND	ug/L	1.0	1		11/09/16 13:22		
Haloether 406	ND	ug/L	1.0	1		11/09/16 13:22		
Haloether 421	ND	ug/L	1.0	1		11/09/16 13:22		
Haloether 427	ND	ug/L	1.0	1		11/09/16 13:22		
Haloether 428	ND	ug/L	1.0	1		11/09/16 13:22		
Haloether 508	ND	ug/L	1.0	1		11/09/16 13:22		
Haloether 528	ND	ug/L	1.0	1		11/09/16 13:22		
Halomar	ND	ug/L	1.0	1		11/09/16 13:22		
2-Hexanone	ND	ug/L	2.0	1		11/09/16 13:22	2 591-78-6	
soflurane	ND	ug/L	1.0	1		11/09/16 13:22		
Methoxyflurane	ND	ug/L	1.0	1		11/09/16 13:22		
Methylene Chloride	ND	ug/L	5.0	1		11/09/16 13:22	2 75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	2.0	1		11/09/16 13:22		
Styrene	ND	ug/L	1.0	1		11/09/16 13:22	2 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/09/16 13:22	2 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		11/09/16 13:22	2 127-18-4	
Toluene	ND	ug/L	1.0	1		11/09/16 13:22	2 108-88-3	
Total Haloether	ND	ug/L	1.0	1		11/09/16 13:22	2	
,1,1-Trichloroethane	ND	ug/L	1.0	1		11/09/16 13:22	2 71-55-6	
I,1,2-Trichloroethane	ND	ug/L	1.0	1		11/09/16 13:22	2 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/09/16 13:22	2 79-01-6	

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

Sample: EFFDUP-20161104	Lab ID: 204	5396004	Collected: 11/04/1	6 15:09	Received: 11	/08/16 08:15 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV HALOETHERS	Analytical Meth	od: EPA 50	030B/8260					
Trichlorofluoromethane	ND	ug/L	1.0	1		11/09/16 13:22	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/09/16 13:22	96-18-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		11/09/16 13:22	76-13-1	
Vinyl chloride	ND	ug/L	1.0	1		11/09/16 13:22	75-01-4	
m&p-Xylene	ND	ug/L	2.0	1		11/09/16 13:22	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/09/16 13:22	95-47-6	
Surrogates								
Toluene-d8 (S)	98	%.	79-119	1		11/09/16 13:22	2037-26-5	
4-Bromofluorobenzene (S)	97	%.	68-124	1		11/09/16 13:22	460-00-4	
Dibromofluoromethane (S)	100	%.	72-126	1		11/09/16 13:22	1868-53-7	

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

QC Batch: 67289 Analysis Method: EPA 5030B/8260
QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV

Associated Lab Samples: 2045396001, 2045396002, 2045396003, 2045396004

METHOD BLANK: 279861 Matrix: Water
Associated Lab Samples: 2045396001, 2045396002, 2045396003, 2045396004

	,	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	1.0	11/09/16 11:01	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	11/09/16 11:01	
1,1,2-Trichloroethane	ug/L	ND	1.0	11/09/16 11:01	
1,1,2-Trichlorotrifluoroethane	ug/L	ND	1.0	11/09/16 11:01	
1,1-Dichloroethane	ug/L	ND	1.0	11/09/16 11:01	
1,1-Dichloroethene	ug/L	ND	1.0	11/09/16 11:01	
1,2,3-Trichloropropane	ug/L	ND	1.0	11/09/16 11:01	
1,2-Dichloroethane	ug/L	ND	1.0	11/09/16 11:01	
1,2-Dichloropropane	ug/L	ND	1.0	11/09/16 11:01	
2-Butanone (MEK)	ug/L	ND	2.0	11/09/16 11:01	
2-Hexanone	ug/L	ND	2.0	11/09/16 11:01	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	2.0	11/09/16 11:01	
Acetone	ug/L	ND	4.0	11/09/16 11:01	
Acrolein	ug/L	ND	8.0	11/09/16 11:01	
Acrylonitrile	ug/L	ND	4.0	11/09/16 11:01	
Benzene	ug/L	ND	1.0	11/09/16 11:01	
Bromodichloromethane	ug/L	ND	1.0	11/09/16 11:01	
Bromoform	ug/L	ND	1.0	11/09/16 11:01	
Bromomethane	ug/L	ND	1.0	11/09/16 11:01	
Carbon disulfide	ug/L	ND	1.0	11/09/16 11:01	
Carbon tetrachloride	ug/L	ND	1.0	11/09/16 11:01	
Chlorobenzene	ug/L	ND	1.0	11/09/16 11:01	
Chloroethane	ug/L	ND	1.0	11/09/16 11:01	
Chloroform	ug/L	ND	1.0	11/09/16 11:01	
Chloromethane	ug/L	ND	1.0	11/09/16 11:01	
cis-1,2-Dichloroethene	ug/L	ND	1.0	11/09/16 11:01	
cis-1,3-Dichloropropene	ug/L	ND	1.0	11/09/16 11:01	
Dibromochloromethane	ug/L	ND	1.0	11/09/16 11:01	
Dibromomethane	ug/L	ND	1.0	11/09/16 11:01	
Enflurane	ug/L	ND	1.0	11/09/16 11:01	
Ethylbenzene	ug/L	ND	1.0	11/09/16 11:01	
Haloether 229	ug/L	ND	1.0	11/09/16 11:01	
Haloether 406	ug/L	ND	1.0	11/09/16 11:01	
Haloether 421	ug/L	ND	1.0	11/09/16 11:01	
Haloether 427	ug/L	ND	1.0	11/09/16 11:01	
Haloether 428	ug/L	ND	1.0	11/09/16 11:01	
Haloether 508	ug/L	ND	1.0	11/09/16 11:01	
Haloether 528	ug/L	ND	1.0	11/09/16 11:01	
Halomar	ug/L	ND	1.0	11/09/16 11:01	
Isoflurane	ug/L	ND	1.0	11/09/16 11:01	
m&p-Xylene	ug/L	ND	2.0	11/09/16 11:01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

METHOD BLANK: 279861 Matrix: Water
Associated Lab Samples: 2045396001, 2045396002, 2045396003, 2045396004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Methoxyflurane	ug/L	ND	1.0	11/09/16 11:01	
Methylene Chloride	ug/L	ND	5.0	11/09/16 11:01	
o-Xylene	ug/L	ND	1.0	11/09/16 11:01	
Styrene	ug/L	ND	1.0	11/09/16 11:01	
Tetrachloroethene	ug/L	ND	1.0	11/09/16 11:01	
Toluene	ug/L	ND	1.0	11/09/16 11:01	
Total Haloether	ug/L	ND	1.0	11/09/16 11:01	
trans-1,2-Dichloroethene	ug/L	ND	1.0	11/09/16 11:01	
trans-1,3-Dichloropropene	ug/L	ND	1.0	11/09/16 11:01	
Trichloroethene	ug/L	ND	1.0	11/09/16 11:01	
Trichlorofluoromethane	ug/L	ND	1.0	11/09/16 11:01	
Vinyl chloride	ug/L	ND	1.0	11/09/16 11:01	
4-Bromofluorobenzene (S)	%.	99	68-124	11/09/16 11:01	
Dibromofluoromethane (S)	%.	100	72-126	11/09/16 11:01	
Toluene-d8 (S)	%.	101	79-119	11/09/16 11:01	

LABORATORY CONTROL SAMPLE:	279862					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		56.2	112	62-131	
1,1,2,2-Tetrachloroethane	ug/L	50	50.7	101	15-179	
1,1,2-Trichloroethane	ug/L	50	49.7	99	58-144	
1,1,2-Trichlorotrifluoroethane	ug/L	50	52.2	104	38-121	
1,1-Dichloroethane	ug/L	50	53.4	107	63-129	
1,1-Dichloroethene	ug/L	50	51.5	103	51-139	
1,2,3-Trichloropropane	ug/L	50	51.2	102	13-187	
1,2-Dichloroethane	ug/L	50	53.4	107	57-148	
1,2-Dichloropropane	ug/L	50	54.2	108	66-128	
2-Butanone (MEK)	ug/L	50	57.9	116	32-183	
2-Hexanone	ug/L	50	52.3	105	36-170	
4-Methyl-2-pentanone (MIBK)	ug/L	50	54.4	109	26-171	
Acetone	ug/L	50	55.1	110	22-165	
Acrolein	ug/L	100	100	100	10-131	
Acrylonitrile	ug/L	50	53.5	107	18-149	
Benzene	ug/L	50	55.6	111	62-131	
Bromodichloromethane	ug/L	50	49.0	98	69-132	
Bromoform	ug/L	50	43.3	87	35-166	
Bromomethane	ug/L	50	49.3	99	34-158	
Carbon disulfide	ug/L	50	57.8	116	31-128	
Carbon tetrachloride	ug/L	50	54.2	108	54-144	
Chlorobenzene	ug/L	50	51.2	102	70-127	
Chloroethane	ug/L	50	44.0	88	17-195	
Chloroform	ug/L	50	50.9	102	73-134	
Chloromethane	ug/L	50	53.0	106	17-153	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

ABORATORY CONTROL SAMPLE:	279862					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
is-1,2-Dichloroethene	ug/L	50	53.3	107	68-129	
s-1,3-Dichloropropene	ug/L	50	53.9	108	72-138	
ibromochloromethane	ug/L	50	46.5	93	49-146	
ibromomethane	ug/L	50	50.4	101	56-145	
nflurane	ug/L	50	52.3	105	56-135	
hylbenzene	ug/L	50	49.4	99	66-126	
aloether 229	ug/L	50	54.8	110	62-123	
aloether 406	ug/L	50	54.5	109	62-134	
aloether 421	ug/L	50	54.5	109	70-128	
aloether 427	ug/L	50	51.2	102	69-153	
aloether 428	ug/L	50	53.8	108	70-134	
aloether 508	ug/L	50	52.7	105	52-139	
aloether 528	ug/L	50	49.2	98	48-157	
llomar	ug/L	50	54.8	110	62-128	
flurane	ug/L	50	52.9	106	61-132	
p-Xylene	ug/L	100	100	100	65-129	
thoxyflurane	ug/L	50	54.7	109	72-124	
thylene Chloride	ug/L	50	53.9	108	46-168	
(ylene	ug/L	50	49.1	98	65-124	
rene	ug/L	50	51.0	102	72-133	
rachloroethene	ug/L	50	49.2	98	46-157	
uene	ug/L	50	52.9	106	69-126	
tal Haloether	ug/L		585			
ns-1,2-Dichloroethene	ug/L	50	52.3	105	60-129	
ns-1,3-Dichloropropene	ug/L	50	53.9	108	59-149	
chloroethene	ug/L	50	53.5	107	67-132	
chlorofluoromethane	ug/L	50	57.8	116	39-171	
yl chloride	ug/L	50	44.6	89	27-149	
Bromofluorobenzene (S)	%.			101	68-124	
promofluoromethane (S)	%.			104	72-126	
uene-d8 (S)	%.			102	79-119	

MATRIX SPIKE & MATRIX SPIR	KE DUPLIC	ATE: 27986	3		279864							
			MS	MSD								
		2045396003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	50	50	60.4	55.2	121	110	54-137	9	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	52.3	52.8	105	106	15-187	1	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	51.5	50.7	103	101	59-148	2	20	
1,1,2-Trichlorotrifluoroethane	ug/L	ND	50	50	53.7	48.2	107	96	40-117	11	20	
1,1-Dichloroethane	ug/L	ND	50	50	57.6	53.6	115	107	59-133	7	20	
1,1-Dichloroethene	ug/L	ND	50	50	55.6	50.4	111	101	44-146	10	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	52.0	52.3	104	105	14-199	1	20	
1,2-Dichloroethane	ug/L	ND	50	50	55.7	53.4	111	107	56-154	4	20	
1,2-Dichloropropane	ug/L	ND	50	50	56.6	54.1	113	108	62-135	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

MATRIX SPIKE & MATRIX SPI	INE DUPLIC	CATE: 27986	MS	MSD	279864							
		2045396003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qu
2-Butanone (MEK)	ug/L		50	50	60.3	58.3	121	117	20-205	3	20	
2-Hexanone	ug/L	ND	50	50	52.7	53.1	105	106	25-189	1	20	
1-Methyl-2-pentanone MIBK)	ug/L	ND	50	50	53.3	53.2	107	106	23-184	0		
Acetone	ug/L	17.4	50	50	70.9	71.0	107	107	11-217	0	20	
Acrolein	ug/L	ND	100	100	45.5	41.9	46	42	10-142	8	20	
Acrylonitrile	ug/L	ND	50	50	52.0	51.7	104	103	20-164	0	20	
Benzene	ug/L	ND	50	50	59.1	55.8	118	112	52-141	6	20	
Bromodichloromethane	ug/L	ND	50	50	52.3	50.8	105	102	70-134	3	20	
Bromoform	ug/L	ND	50	50	43.9	43.8	87	87	37-171	0	20	
Bromomethane	ug/L	ND	50	50	49.0	40.2	98	80	34-155	20	20	
Carbon disulfide	ug/L	ND	50	50	67.6	55.4	135	111	28-130	20	-	M1
Carbon tetrachloride	ug/L	ND	50	50	57.4	53.0	115	106	48-146	8	20	-
Chlorobenzene	ug/L	ND	50	50	53.2	51.3	106	103	67-129	4	20	
Chloroethane	ug/L	ND	50	50	43.4	38.8	87	78	12-192	11	20	
Chloroform	ug/L	ND	50	50	54.5	51.4	109	103	66-143	6		
Chloromethane	ug/L	ND	50	50	59.9	53.0	119	105	14-155	12		
is-1,2-Dichloroethene	ug/L	ND	50	50	57.4	53.7	115	107	56-141	7		
is-1,3-Dichloropropene	ug/L	ND	50	50	56.8	55.0	114	110	70-139	3	20	
Dibromochloromethane	ug/L	ND	50	50	47.3	46.9	95	94	50-150	1	20	
Dibromomethane	ug/L ug/L	ND	50	50	53.1	51.3	106	103	58-153	3		
Enflurane	ug/L ug/L	ND	50	50	54.5	49.9	100	100	63-126	9	20	
Ethylbenzene	-	ND	50	50	51.9	50.2	109	100	57-135	3		
•	ug/L	ND ND		50								R1
Haloether 229	ug/L		50		58.2	44.1	116	88	56-127	28		ΚI
Haloether 406	ug/L	ND	50	50	52.4	47.1	105	94	68-128	11	20	
Haloether 421	ug/L	ND	50	50	56.6	52.7	113	105	74-120	7		
Haloether 427	ug/L	ND	50	50	52.3	49.4	105	99	78-120	6		
Haloether 428	ug/L	ND	50	50	54.1	51.7	108	103	74-125	5		
laloether 508	ug/L	ND	50	50	49.9	45.2	100	90	28-156	10	20	
Haloether 528	ug/L	ND	50	50	48.5	45.2	97	90	45-142	7		
Halomar	ug/L	ND	50	50	57.1	53.3	114	107	67-123	7		
soflurane	ug/L	ND	50	50	53.6	50.2	107	100	45-140	7		
n&p-Xylene	ug/L	ND	100	100	68.9	67.4	69	67	56-136	2		
Methoxyflurane	ug/L	ND	50	50	55.4	53.4	111	107	75-119	4	20	
Methylene Chloride	ug/L	ND	50	50	56.6	52.3	113	105	45-166	8	20	
o-Xylene	ug/L	ND	50	50	49.7	48.6	99	97	57-133	2		
Styrene	ug/L	ND	50	50	1.5	1.4	3	3	58-144	8	20	M1
etrachloroethene	ug/L	ND	50	50	53.0	51.0	106	102	48-143	4	20	
oluene	ug/L	ND	50	50	56.7	53.2	113	106	59-136	6	20	
otal Haloether	ug/L	ND			593	542				9		
rans-1,2-Dichloroethene	ug/L	ND	50	50	57.1	53.3	114	107	57-132	7	20	
rans-1,3-Dichloropropene	ug/L	ND	50	50	56.0	54.6	112	109	59-154	3		
richloroethene	ug/L	ND	50	50	58.0	53.6	116	107	58-140	8	20	
richlorofluoromethane	ug/L	ND	50	50	53.9	47.4	108	95	24-175	13		
/inyl chloride	ug/L	ND	50	50	41.1	36.8	82	74	21-150		20	
I-Bromofluorobenzene (S)	%.		= =				100	101	68-124	-		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(504)469-0333

QUALITY CONTROL DATA

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 27986	3		279864							
		2045396003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec		RPD	RPD	Qual
Dibromofluoromethane (S)	%.				-		105	102	72-126			
Toluene-d8 (S)	%.						102	102	79-119			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

LABORATORIES

PASI-N Pace Analytical Services - New Orleans

ANALYTE QUALIFIERS

Date: 11/16/2016 05:16 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Fibers Public Supply Wells

Pace Project No.: 2045396

Date: 11/16/2016 05:16 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2045396001	TB-20161104	EPA 5030B/8260	67289		
2045396002	INF-20161104	EPA 5030B/8260	67289		
2045396003	EFF-20161104	EPA 5030B/8260	67289		
2045396004	EFFDUP-20161104	EPA 5030B/8260	67289		

Pace Analytical

CHAIN-OF-CUSTODY

MO#: 2045396

The Chain-of-Custody is a LEGAL [

(N/A) SAMPLE CONDITIONS (N/Y) Comments i ç Cooler 5 paleag (N/A) Regulatory Agenc Received on State / Location Residual Chlorine (Y/N) Page: TEMP In C TIME EPA 300.0 Chloride Requested Analysis Filtered (Y/N) DATE SK 175 Methane EPA 6010 Total Metals (Fe, Mn) EPA 6010 Dissolved Metals (Fe, Mn STAM D516,90,02 Sulfate justin.stock@pacelabs.com SM 5310B TOC CCEPTED BY / AFFILIATION SM 2320B Alkalinity EPA 82608 Haloethers N/A Analyses Test 2045396 Other 1020 Accounts Payable Methanol Andri (olon Company Name: ARCADIS Preservatives Na2S2O3 HOEN XXXXX Pace Project Manager: HCI Invoice Information: EONH Pace Profile #: S OS H Pace Quote: Section C TIME Address: Unpreserved m m m 3 SAMPLER NAME AND SIGNATURE # OF CONTAINERS 11/00/16 PRINT Name of SAMPLER: 11-7-16 SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE SAL 248 6051 MHO) 100/k, 1509 MIS (SA Pall 1509 ころうないる TIME END cassandra.mccloud@arcadis-us.com Fibers Public Supply Wells DATE COLLECTED Arwass RELINQUISHED BY / AFFILIATION CO001911.0003 1602A TIME Cassandra McCloud START DATE David Howard Required Project Information: 3 3 5 WTG SAMPLE TYPE (G=GRAB C=COMP) O Ž MATRIX CODE (see valid codes to left) Project Name: Copy To: Section B CODE DW WT WW SIL OL OL AR AR TS MATRIX
Drinking Water
Water
Water
Product
Soil/Soild
Oil
Whee
Mir
Alir
Other
Tissue david.howard@arcadis-us.com ARCADIS U.S., Inc. 410 North 44th St., Suite 1000 EFF-MS-2016 1104 EFF MSD- 2016 1104 EFF DAP- 20 161104 ADDITIONAL COMMENTS TB-2016 1104 One Character per box. (A-Z, 0-91, -) Sample Ids must be unique EFF-2016 1104 WF- 2016 1104 Fax: SAMPLE ID 602.797.4518 Required Client Information: Phoenix, AZ 85008 Requested Due Date Email To: Phone: 10 7 7 H M3TI 9 8 6

Page 19 of 20

WO#: 2045396

	Sample 0 Riverbend. Blvd., Suite F Rose, LA 70087	Conditio	n Upon PM: JL CLIENT Pr	
Courier: ☐ Pace Courier ☐	Hired Courier F	ed X 🗆 U	PS □ DHL	☐ USPS ☐ Customer ☐ Other
Custody Seal on Cooler/Box Prese	nt: [see COC]			Custody Seals intact: ☐Yes ☐No
Therometer Used: Therm Fisher Therm Fisher Therm Fisher	IR 6 Type	e of Ice.	Wet Blue None	Samples on ice: [see COC]
Cooler Temperature: [see COC]	Temp sho	uld be above	freezing to 6°C	Date and Initials of person examining contents:
Temp must be measured from Tempera	uture blank when present	t_	Comments:	
Temperature Blank Present"?	□Ye	s No DNA	1	
Chain of Custody Present:	Ye	s □No □N/A	2	
Chain of Custody Complete:	' \\Ye	s 🗆 No 🗆 N/A	3	
Chain of Custody Relinquished:	Ye	s □No □N/A	4	
Sampler Name & Signature on CO	C: Ye	s □No □N/A	5	
Samples Arrived within Hold Time:		s 🗆 No 🗆 N/A	6	
Sufficient Volume:	Dye.	s 🗆 No 🗆 N/A	7	
Correct Containers Used:	Ye	s □No □N/A		
Filtered vol. Rec. for Diss. tests	□Ye	s 🗆 No 🎝 N/A		
Sample Labels match COC:	Ye	s 🗆 No 🗆 N/A		
All containers received within mana precautionary and/or expiration date	TV-	s 🗆 No 🍂		
All containers needing chemical pre been checked (except VOA, coliforr		s 🗆 No 💆 N/A	12	
All containers preservation checked compliance with EPA recommendated		s 🗆 NO DINIA		oreserative added? □Yes □No cord lot no.: HNO3 H2SO4
Headspace in VOA Vials (>6mm):	□Ye	s DNO DN/A	14	
Trip Blank Present:	Ye	s □No	15	
 Client Notification/ Resolution:				7
Person Contacted:				Date/Time:
Comments/ Resolution:				

Attachment 3 Sampling and Monitoring Field Form

Groundwater Extraction and Treatment System (GWETS) Sampling and Monitoring Field Form Fibers Public Supply Wells Superfund Site Guayama, Puerto Rico

Collection Date	Sample ID	Collection Time	Sampler's Initials
11/04/10	TB-2016/104	VAB	LAR
11/04/16	INF-2016/104	1445	A~
11/04/16	EFF - 20161104	1509	AC
11/04/14	EFF DUP - 20661107	1509	AC
11/04/10	EPFM5-201611011	1509	AC
11/04/1	EFFM6D-20161104	1509	AC

GWETS Operational Data at Sample Collection

Extraction Wells

RW-2	115.0	gpm
RW-4	160.0	gpm
RW-5	40.0	gpm

Compound Treatment System

Influent Flow Rate (FIT-101)	350.4	gpm
Effluent Flow Rate (FIT-301)	346.1	gpm
Blower (FIT-201A)	2145	cfm
Influent Flow Pressure (PIT-101)	2.6	psi
Effluent Flow Pressure (PIT-301)	1417	psi
pH (pHIT-201A)	412	

Notes:

gpm = gallons per minute cfm = cubic feet per minute psi = pounds per square inch